4.5 The Dimension of a Vector Space

Theorem 10
If a vector space V has a basis B = {by,...,b,}, then any setin V containing more than m vectors must be
linearly dependent.

Theorem 11

If a vector space V' has a basis of n vectors, then every basis of V' must consist of exactly n vectors.

Recall the Spanning Set Theorem in § 4.3:

Theorem 5. The Spanning Set Theorem

Let S = {vi,...,Vv,} beasetinavector space V, and let H = Span {vy,...,Vv,}.

a. If one of the vectors in S-say, v;-is a linear combination of the remaining vectors in S, then the set formed
from S by removing vy, still spans H.

b. If H # {0}, some subset of S is a basis for H.

If a nonzero vector space V' is spanned by a finite set .S, then a subset of S'is a basis for V, by the Spanning
Set Theorem. In this case, Theorem 11 ensures that the following definition makes sense.

Definition.

If a vector space V' is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V'
, written as dim V, is the number of vectors in a basis for V.. The dimension of the zero vector space {0} is
defined to be zero. If V is not spanned by a finite set, then V' is said to be infinite-dimensional.

Example 1.

For the given subspace (a) find a basis, and (b) state the dimension.
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Subspaces of a Finite-Dimensional Space

Theorem 12

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be
expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

dim H < dimV

Theorem 13 The Basis Theorem

Let V be a p-dimensional vector space, p > 1. Any linearly independent set of exactly p elementsin V' is
automatically a basis for V. Any set of exactly p elements that spans V' is automatically a basis for V.

The Dimensions of Nul A4, Col A, and Row A

Definition (Rank, Nullity).

The rank of an m X m matrix A is the dimension of the column space and the nullity of A is the dimension of
the null space.

Remark. The rank of an m X n matrix A is the number of pivot columns and the nullity of A is the number of
free variable}.Si&the dimension of the row space is the number of pivot rows, it is also equal to the rank of

A. OfA’,é:‘é‘ dim Row A = dim ColA = Tank A

Theorem 14 The Rank Theorem

The dimensions of the column space and the null space of an m X n matrix A satisfy the equation

rank A + nullity A = number of columns in A




Example 2. Determine the dimensions of Nul A, Col 4, and Row A for the matrix.
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Example 3. The first four Hermite polynomials are 1, 2¢, —2 + 4t2, and —12t + 8t3. Show that the first four
Hermite polynomials form a basis of [P3.
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Example 4. If a 3 x 8 matrix A has rank 3, find nullity 4, rank A, and rank A7,
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Rank and the Invertible Matrix Theorem

Theorem. The Invertible Matrix Theorem (continued)

Let A be ann X n matrix. Then the following statements are each equivalent to the statement that A4 is an
invertible matrix.

m. The columns of A form a basis of R".

n.ColA = R"

o.rankA=n

p.nullity A =0

q. Nul 4 = {0}



Exercise 5. Find the dimension of the subspace spanned by the given vectors.
1 -3 -8 -3
=21, 41, 61, 0
0 1 5 7

Solution. The matrix A with these vectors as its columns row reduces to

1 -3 -8 -3 1 0 7 0
—2 4 6 0Of~10 1 5 0
0 1 5 7 0 0 01

There are three pivot columns, so the dimension of Col A (which is the dimension of the subspace spanned by

the vectors) and Row A is 3.

Exercise 6. If the nullity of a 7 x 6 matrix A is 5, what are the dimensions of the column and row spaces of A?

Solution. Rank A = 6 — 5 = 1 so the dimension of the column space and row space is 1 .



