4.5 The Dimension of a Vector Space

Theorem 10

If a vector space V has a basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$, then any set in V containing more than n vectors must be linearly dependent.

Theorem 11

If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Recall the Spanning Set Theorem in § 4.3:

Theorem 5. The Spanning Set Theorem Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ be a set in a vector space V, and let $H = \text{Span} {\mathbf{v}_1, \dots, \mathbf{v}_p}$. a. If one of the vectors in S-say, \mathbf{v}_k -is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H. b. If $H \neq {0}$, some subset of S is a basis for H.

If a nonzero vector space V is spanned by a finite set S, then a subset of S is a basis for V, by the Spanning Set Theorem. In this case, Theorem 11 ensures that the following definition makes sense.

Definition.

If a vector space V is spanned by a finite set, then V is said to be **finite-dimensional**, and the **dimension** of V, written as dim V, is the number of vectors in a basis for V. The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.

Example 1.

For the given subspace (a) find a basis, and (b) state the dimension.

$$H = \left\{ \begin{bmatrix} a - 4b - 2c \\ 2a + 5b - 4c \\ -a + 2c \\ -3a + 7b + 6c \end{bmatrix} : a, b, c \text{ in } \mathbb{R} \right\} \alpha \begin{bmatrix} \frac{1}{a} \\ -1 \\ -3 \end{bmatrix} + b \begin{bmatrix} \frac{4}{5} \\ 0 \\ 7 \end{bmatrix} + c \begin{bmatrix} -2 \\ -4 \\ 2 \\ 6 \end{bmatrix}$$
Thus $H = \text{Span } \overline{77_1}, \overline{73_2}, \overline{73_3}$, where $\overline{77_1} = \begin{bmatrix} \frac{1}{2} \\ -1 \\ -3 \end{bmatrix}, \overline{73_2} = \begin{bmatrix} -4 \\ 5 \\ 0 \\ 7 \end{bmatrix}, \overline{73_3} = \begin{bmatrix} -2 \\ -4 \\ 2 \\ 6 \end{bmatrix}$
Notice that $\overline{73_3} = -2\overline{77_1}, \overline{77_1}, \overline{77_2}, \overline{73_3}$ is a linearly dependent set.
By the Spanning Set Theorem, $\overline{73_3}$ (or $\overline{77_1}$) can be removed.
So $H = \text{Span } \overline{77_1}, \overline{73_3}, \overline{73_3}$, Since $\overline{71_1}$ and $\overline{73_2}$ are not

multiples of each other. $\{\vec{v}_i, \vec{v}_s\}$ is linearly independent. Thus it is a basis for H. So dim H=2.

Subspaces of a Finite-Dimensional Space

Theorem 12

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

 $\dim H \leq \dim V$

Theorem 13 The Basis Theorem

Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

The Dimensions of Nul A, Col A, and Row A

Definition (Rank, Nullity).

The **rank** of an $m \times n$ matrix A is the dimension of the column space and the **nullity** of A is the dimension of the null space.

Remark. The rank of an $m \times n$ matrix A is the number of pivot columns and the nullity of A is the number of free variables. Since the dimension of the row space is the number of pivot rows, it is also equal to the rank of A.

Theorem 14 The Rank Theorem

The dimensions of the column space and the null space of an $m \times n$ matrix A satisfy the equation

 $\operatorname{rank} A + \operatorname{nullity} A = \operatorname{number} \operatorname{of} \operatorname{columns} \operatorname{in} A$

Example 2. Determine the dimensions of $\operatorname{Nul} A$, $\operatorname{Col} A$, and Row A for the matrix.

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 4 & 7 \\ 0 & 0 & 5 \end{bmatrix}$$

Note the matrix A is already in its echelon form.
There are three pivot columns (arricl rows).
So the dimension of CoIA and Row A is 3.
By the rank theorem, dim NuIA = nullity $A = 0$.

Example 3. The first four Hermite polynomials are $1, 2t, -2 + 4t^2$, and $-12t + 8t^3$. Show that the first four Hermite polynomials form a basis of \mathbb{P}_3 .

Recall -
$$\mathbb{P}_{3}$$
 is the vector space of polynomials of degree
at most 3.
- The standard basis for \mathbb{P}_{3} is $\{1, t, t^{2}, t^{3}\}$ and dim $\mathbb{P}_{3}=4$.
We are given 4 polynomials, by the Basis Theorem, it's enough
to show that they are linearly independent. That is, if
 $x_{1}\cdot 1 + x_{2}\cdot 2t + x_{3}\cdot (-2++t^{2}) + x_{4}\cdot (-12t+8t^{3}) = 0$
then the only solution is $x_{1} = x_{2} = x_{3} = x_{4} = 0$.
 $\mathbb{P} \Rightarrow (x_{1} - 2x_{3}) \mathbf{1} + (2x_{2} - (2x_{4})t + (-4x_{3})t^{2} + (-8x_{4})t^{3} = 0$
This means all the coefficients for $1, t, t^{2}, t^{3}$ are zeros.
So we have $\int x_{1} - 2x_{3} = 0$ The coefficient motrix is
 $2x_{2} - 12x_{4} = 0$ $A = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & -12 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix}$

which has 4 pivot position. Thus the only solution for $A = \vec{o}$ is brivial: $x_1 = x_2 = x_3 = x_4 = 0$. So the given polynomials are linearly independent, and they form a basis for PPs by the the Basis Theorem. Example 4. If a 3 × 8 matrix A has rank 3, find nullity A, rank A, and rank A^T . General fact: rank $A = rank A^T$ Since: Col $A^T = Row A$ $dim(Col A^T) = dim(Row A)$ $\|by det \|by dim Row A = dim colA$ $rank A^T = rank A$ Avs: nullity A = number of columns of A - van A = 8-3=5

rank
$$A = 3$$
.

rank AT = rank A = 3

Rank and the Invertible Matrix Theorem

Theorem. The Invertible Matrix Theorem (continued)

Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.

m. The columns of A form a basis of \mathbb{R}^n .

n. $\operatorname{Col} A = \mathbb{R}^n$

o. rank A = n

p. nullity A = 0

q. Nul $A = \{0\}$

Exercise 5. Find the dimension of the subspace spanned by the given vectors.

 $\begin{bmatrix} 1\\-2\\0 \end{bmatrix}, \begin{bmatrix} -3\\4\\1 \end{bmatrix}, \begin{bmatrix} -8\\6\\5 \end{bmatrix}, \begin{bmatrix} -3\\0\\7 \end{bmatrix}$

Solution. The matrix A with these vectors as its columns row reduces to

[1	-3	-8	-3		[1	0	7	0]
-2	4	6	0	\sim	0	1	5	0
0	1	5	7		0	0	0	1

There are three pivot columns, so the dimension of $\operatorname{Col} A$ (which is the dimension of the subspace spanned by the vectors) and Row A is 3 .

Exercise 6. If the nullity of a 7×6 matrix A is 5, what are the dimensions of the column and row spaces of A?

Solution. Rank A = 6 - 5 = 1 so the dimension of the column space and row space is 1 .