4.5 The Dimension of a Vector Space

Theorem 10
If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set in V containing more than n vectors must be linearly dependent.

Theorem 11
If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Recall the Spanning Set Theorem in § 4.3:

Theorem 5. The Spanning Set Theorem
Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set in a vector space V, and let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.
a. If one of the vectors in S-say, \mathbf{v}_{k}-is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_{k} still spans H.
b. If $H \neq\{0\}$, some subset of S is a basis for H.

If a nonzero vector space V is spanned by a finite set S, then a subset of S is a basis for V, by the Spanning Set Theorem. In this case, Theorem 11 ensures that the following definition makes sense.

Definition.
If a vector space V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V , written as $\operatorname{dim} V$, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Example 1.
For the given subspace (a) find a basis, and (b) state the dimension.

$$
H=\left\{\left[\begin{array}{c}
a-4 b-2 c \\
2 a+5 b-4 c \\
-a+2 c \\
-3 a+7 b+6 c
\end{array}\right]: a, b, c \text { in } \mathbb{R}\right\} \quad a\left[\begin{array}{c}
1 \\
2 \\
-1 \\
-3
\end{array}\right]+b\left[\begin{array}{c}
-4 \\
5 \\
0 \\
7
\end{array}\right]+c\left[\begin{array}{c}
-2 \\
-4 \\
2 \\
6
\end{array}\right]
$$

Thus $H=\operatorname{span}\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}$, where $\vec{V}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1 \\ -3\end{array}\right], \vec{V}_{2}=\left[\begin{array}{c}-4 \\ 5 \\ 0 \\ 7\end{array}\right], \vec{V}_{3}=\left[\begin{array}{c}-2 \\ -4 \\ 2 \\ 6\end{array}\right]$.
Notice that $\vec{v}_{3}=-2 \vec{v}_{1} .\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a linearly dependent set.
By the Spanning Set Theorem, \vec{V}_{3} (or \vec{V}_{1}) can be removed.
So $H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$. Since \vec{v}_{1} and \vec{v}_{2} are not
multiples of each other. $\left\{\vec{V}_{1}, \vec{V}_{2}\right\}$ is linear' y independent. Thus it is a basis for H. So $\operatorname{dim} H=2$.

Subspaces of a Finite-Dimensional Space

Theorem 12

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

$$
\operatorname{dim} H \leq \operatorname{dim} V
$$

Theorem 13 The Basis Theorem

Let V be a p-dimensional vector space, $p \geq 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

The Dimensions of Null $A, \operatorname{Col} A$, and Row A

Definition (Rank, Nullity).

The rank of an $m \times n$ matrix A is the dimension of the column space and the nullity of A is the dimension of the null space.

Remark. The rank of an $m \times n$ matrix A is the number of pivot columns and the nullity of A is the number of free variables. Since the dimension of the row space is the number of pivot rows, it is also equal to the rank of A. of $A \vec{x}=\overrightarrow{0} \quad \operatorname{dim} \operatorname{Row} A=\operatorname{dim} \operatorname{Col} A=\operatorname{rank} A$

Theorem 14 The Rank Theorem

The dimensions of the column space and the null space of an $m \times n$ matrix A satisfy the equation

$$
\operatorname{rank} A+\text { nullity } A=\text { number of columns in } A
$$

Example 2. Determine the dimensions of $\operatorname{Nul} A, \operatorname{Col} A$, and $\operatorname{Row} A$ for the matrix.

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 4 & 7 \\
0 & 0 & 5
\end{array}\right]
$$

Note the matrix A is already in its echelon form.
There are three pivot columns (arid rows).
So the dimension of $\operatorname{Col} A$ and $\operatorname{Row} A$ is 3 .
By the rank theorem, $\operatorname{dim} N u l A=$ nullity $A=0$.

Example 3. The first four Hermite polynomials are $1,2 t,-2+4 t^{2}$, and $-12 t+8 t^{3}$. Show that the first four Hermite polynomials form a basis of \mathbb{P}_{3}.

Recall - \mathbb{P}_{3} is the vector space of polynomials of degree at most 3 .

- The standard basis for \mathbb{P}_{3} is $\left\{1, t, t^{2}, t^{3}\right\}$ and $\operatorname{dim} \mathbb{P}_{3}=4$.

We are given 4 polynomials, by the Basis Theorem, it's enough to show that they are linearly independent. That is, if

$$
x_{1} \cdot 1+x_{2} \cdot 2 t+x_{3} \cdot\left(-2+4 t^{2}\right)+x_{4} \cdot\left(-12 t+8 t^{3}\right)=0
$$

then the only solution is $x_{1}=x_{2}=x_{3}=x_{4}=0$.

$$
\Leftrightarrow\left(x_{1}-2 x_{3}\right) 1+\left(2 x_{2}-12 x_{4}\right) t+\left(4 x_{3}\right) t^{2}+\left(8 x_{4}\right) t^{3}=0
$$

This means all the coefficients for $1, t, t^{2}, t^{3}$ are zeros.
So we have $\begin{cases}x_{1} & -2 x_{3}=0 \text { The coefficient matrix is }\end{cases}$

$$
\left\{\begin{array}{rl}
-2 x_{3} & =0 \\
2 x_{2}-12 x_{4} & =0 \\
4 x_{3} & =0 \\
8 x_{4} & =0
\end{array} \quad A=\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 2 & 0 & -12 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 8
\end{array}\right]\right.
$$

which has 4 pivot position. Thus the only solution for $A \vec{x}=\overrightarrow{0}$ is trivial: $x_{1}=x_{2}=x_{3}=x_{4}=0$.
So the given polynomials are linearly independent, and they form a basis for \mathbb{P}_{3} by the the Basis Theorem.
Example 4. If a 3×8 matrix A has rank 3 , find nullity A, rank A, and $\operatorname{rank} A^{T}$.
General fact: $\operatorname{rank} A=\operatorname{rank} A^{\top}$
Since: $\operatorname{Col} A^{\top}=$ Row A

$$
\begin{aligned}
\operatorname{dim}\left(C_{0} \mid A^{\top}\right) & =\operatorname{dim}(\operatorname{Row} A) \\
\| \operatorname{bby}^{\operatorname{def}} & \| \operatorname{by} \operatorname{dim} \operatorname{Row} A=\operatorname{dim} \operatorname{col} A \\
\operatorname{rank} A^{\top} & =\operatorname{rank} A
\end{aligned}
$$

ANS: nullity $A=$ number of columns of $A-\operatorname{ran} A=8-3=5$
$\operatorname{rank} A=3$.
$\operatorname{rank} A^{\top}=\operatorname{rank} A=3$.

Rank and the Invertible Matrix Theorem
Theorem. The Invertible Matrix Theorem (continued)
Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.
m . The columns of A form a basis of \mathbb{R}^{n}.
n. $\operatorname{Col} A=\mathbb{R}^{n}$
o. $\operatorname{rank} A=n$
p. nullity $A=0$
q. $\operatorname{Nul} A=\{0\}$

Exercise 5. Find the dimension of the subspace spanned by the given vectors.
$\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{r}-3 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{r}-8 \\ 6 \\ 5\end{array}\right],\left[\begin{array}{r}-3 \\ 0 \\ 7\end{array}\right]$

Solution. The matrix A with these vectors as its columns row reduces to

$$
\left[\begin{array}{rrrr}
1 & -3 & -8 & -3 \\
-2 & 4 & 6 & 0 \\
0 & 1 & 5 & 7
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 7 & 0 \\
0 & 1 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

There are three pivot columns, so the dimension of $\operatorname{Col} A$ (which is the dimension of the subspace spanned by the vectors) and Row A is 3 .

Exercise 6. If the nullity of a 7×6 matrix A is 5 , what are the dimensions of the column and row spaces of A ? Solution. Rank $A=6-5=1$ so the dimension of the column space and row space is 1 .

